
Using Long-Term Structure to Retrieve Music:
Representation and Matching.

Jean-Julien Aucouturier

SONY Computer Science Labs, Inc.
Rue Amyot, 75005 Paris, France

jjaucouturier@caramail.com

Mark Sandler
Department of Electronic Engineering,

Queen Mary, University of London,
Mile End Road, London E14NS, UK

mark.sandler@elec.qmw.ac.uk

ABSTRACT

We present a measure of the similarity of the long-term structure
of musical pieces. The system deals with raw polyphonic data.
Through unsupervised learning, we generate an abstract
representation of music - the “texture score”. This “texture
score” can be matched to other similar scores using a
generalized edit distance, in order to assess structural similarity.
We notably apply this algorithm to the retrieval of different
interpretations of the same song within a music database.

1. MOTIVATION
Motivation for this system is our belief that a bird-eye-view of a
song’s long-term structure is often a sufficient description for
music retrieval purposes. In particular, our system doesn’t use
any “transcription” information such as pitch or rhythm. Thus, it
can deal with polyphonic music without the problem of
instrument separation.

A similar approach has already been illustrated by Foote in [1],
where the author designs an algorithm to retrieve orchestral
music based on the energy profiles. A drawback of his system is
that it requires music with high dynamic variations. To address
this problem, our approach is rather based on spectral variation:
we uncover and match the succession over time of abstract
“spectral textures”.

2. REPRESENTATION
A piece of polyphonic music can be viewed as the superposition
of different instruments playing together, each with its own
timbre. We call “texture“ the polyphonic timbre resulting of this
superposition. For example, a piece of rock music could be the
succession over time of the following textures: {drums}, then
{drums + bass + guitar}, then {drums + bass}, then {drums +
bass + guitar + voice}, etc…

The front-end for our system is based on work done by the
authors in [2]. The musical signal is first windowed into short
30ms overlapping frames. For each of the frames, we compute
the short-time spectrum. We then estimate its spectral envelope
using Mel Cepstrum Coefficients [3]. A Hidden Markov Model
(HMM) [4] is then used to classify the frames in an
unsupervised way: it learns the different textures occurring in
the song in terms of mixtures of Gaussian distributions over the
space of spectral envelopes. The learning is done with the
classic Baum-Welsh algorithm. Each state of the HMM accounts
for one texture. Through Viterbi decoding, we finally label each
frame with its corresponding texture.

Our “texture score” representation is just the succession over
time of the textures learned by the model (figure 1). It reveals
much of the structure of the song: phrases succeed to phrases,
common patterns are repeated every verse and chorus,
instrument solos stand out clearly and echo the introduction and
ending, etc.

Figure 1: The texture score representation for a few seconds

of music.

One interesting property of this representation is that the
spectral signification of the textures has been discarded by the
HMM. The texture score of figure 1 could correspond to
{drums} - {guitar + drums} - {guitar + drums + voice} -{guitar
+ drums}, but could also well be {cello} - {cello + violin} -
{cello + violin + voice} - {cello + violin}, etc. We only know
about the succession of the textures, not about the textures
themselves. We will use this property to match different
interpretations of the same song (i.e. same long-term structure)
which use different instrumentations (i.e. the spectral content of
the textures is different).

3. MATCHING
In order to assess the structural similarity of pieces of music,
we’ve designed an appropriate string-matching algorithm to
compare texture scores. Each score is a simple string of digits
out of a small alphabet: if we’ve identified 4 textures in the
song, the score will be of the form …11221333441… out of the
alphabet {1,2,3,4}.

There are three issues that the string-matching algorithm needs
to solve:

- Noise: similar structures can differ quite a lot locally, so the
matching can only be approximate.

- Time Warping: two different performances with the same
structure can have a different rhythm or expressivity
(rubato…).

- Permutations: the numeration of the textures by the front-
end is arbitrary. This means that a texture which is referred

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.

to as “1” in one song, could be referred to as “3” in
another. Therefore, the two strings “112133” and “331322”
should be considered to be the same (as they differ only by
the following permutation {(1,3), (2,1), (3,2)}).

The first two issues are classically dealt with using dynamic
programming to compute an edit distance (also called
Levenshtein distance) [5]. It gives the minimal number of local
transformations (insertion, deletion, substitution) needed to
transform – or “edit”- one string into one other.

However, the third issue has not received much coverage in the
string matching literature. To avoid the brute force approach
consisting of !n distance measures for all permutation of the
alphabet, Baker in [6] suggests an interesting factorization
method. Unfortunately, it is mainly designed for exact matching
(without noise), and is also very dependent on the time scale.

Our integrated solution to these three issues is a generalized edit
distance, where we progressively adapt the cost of the each
elementary substitution as the edit distance between two strings
is computed. At the beginning of the process, we “charge” every
substitution of one symbol into another, except the identity. By
the end of the measure, the costs have changed to “learn” the
best permutation between the two strings: we “charge” every
substitution (including identity) except the ones corresponding
to the permutation between the two strings.

4. TWO APPLICATIONS
4.1 Clustering covers of the same songs
Figure 2 shows the texture scores for the beginning of two
versions of the same song, with different instrumentations: the
first one is a male singer and an accompaniment based on
accordion; the second one has a female singer and violins. Since
we have freed ourselves from these spectral differences by using
the texture scores, we are able to notice that the two pieces show
some similarity. We have applied our algorithm on a database
containing different versions of different songs (notably 3
versions of a French song from the 50’s by A. Bourvil, J. Greco
and I. Aubret, 4 versions of a Bob Dylan tune, with acoustic or
electric guitar, studio or live recording, etc.), and the results are
encouraging: the edit distance between “covers” is generally
small, and the distance between different songs is big, which
allows us to cluster the different interpretations.

Figure2: Comparison of the texture score representations of

two different interpretations of the same song.

4.2 Clustering songs of the same genre.
We have also applied our algorithm to cluster a database
containing acoustic blues (3 Robert Johnson tunes, 2 Son House
and 2 Tommy Johnson), folk (4 songs by Nick Drake) and
country pieces (4 songs by Woody Guthrie). As most of the
blues tunes show a common phrase structure (AAB), we are able
to gather and separate them from the other pieces. Once again, a
bottom-up spectral approach can’t easily succeed in this task,
since all the pieces contain mostly the same instrumentation
(voice + guitar).

5. CONCLUSION
The texture score is a good representation to study the long-term
structure of polyphonic musical signals. In the context of string
matching, it provides an efficient retrieval tool to cluster songs
with the same structure. Two applications are covers of the same
tune, and pieces of the same “structural” genre.

This tool is especially useful since it disregards the spectrum
content of the signals. Obtaining the same assessment of
structural similarity from the extraction of “transcription”
features such as pitch, instrumentation and rhythm would
actually require very sophisticated high-level knowledge.

The generation of the texture score involves a machine-learning
algorithm, which is quite intensive for a database application
(processing a piece of music takes about real time), but once
extracted, the score can be stored as metadata, and the retrieval
can be performed in reasonable times (it is just an edit distance).

Further work includes generating “cleaner” texture scores (for
issues on the front-end, see [2]), and optimizing the computation
of our generalized edit distance. The scheme still has to be
tested on a large corpus of tunes and genres to measure a
meaningful precision rate, but we believe that these results
already show the relevance of this alternative approach to Music
Retrieval.

6. ACKNOWLEDGMENTS
Thanks to Maxime Crochemore from Institut Gaspard Monge,
Marne-La-Vallee, France, and to Yoan J. Pinzon from King’s
College London, UK, for discussions on string matching. This
work has been partially supported by the British Council, UK

7. REFERENCES
[1] Foote J., “ARTHUR: Retrieving Orchestral Music by

Long-Term Structure”. In Proc. 1st ISMIR, October 2000.

[2] Aucouturier, J-J, and Sandler, M., “Segmentation of
Musical Signals Using Hidden Markov Models”. In Proc.
AES 110th Convention, May 2001.

[3] Rabiner, L.R. and Juang, B.H., “Fundamentals of speech
recognition”. Prentice-Hall 1993

[4] Rabiner, L., “A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition”. In Proc.
IEEE, vol. 77, no. 2, 1989.

[5] Crochemore, M., and Rytter, W., “Text Algorithms”.
Oxford University Press, 1994.

[6] Baker, B.S., “Parameterized Pattern Matching: Algorithms
and Applications”, to appear in J. Comput. Syst. Sci

