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ABSTRACT
Musical genres are categorical descriptions that are used to
describe music. They are commonly used to structure the
increasing amounts of music available in digital form on the
Web and are important for music information retrieval.
Genre categorization for audio has traditionally been
performed manually. A particular musical genre is
characterized by statistical properties related to the
instrumentation, rhythmic structure and form of its
members. In this work, algorithms for the automatic genre
categorization of audio signals are described.  More
specifically, we propose a set of features for representing
texture and instrumentation. In addition a novel set of
features for representing rhythmic structure and strength is
proposed. The performance of those feature sets has been
evaluated by training statistical pattern recognition
classifiers using real world audio collections.  Based on the
automatic hierarchical genre classification two graphical
user interfaces for browsing and interacting with large
audio collections have been developed.

1. INTRODUCTION
Musical genres are categorical descriptions that are used to
characterize music in music stores, radio stations and now on the
Internet. Although the division of music into genres is somewhat
subjective and arbitrary there are perceptual criteria related to the
texture, instrumentation and rhythmic structure of music that can
be used to characterize a particular genre. Humans are remarkably
good at genre classification as investigated in [1] where it is
shown that humans can accurately predict a musical genre based
on 250 milli seconds of audio.  This finding suggests that humans
can judge genre using only the musical surface without
constructing any higher level  theoretic descriptions as has been
argued in [2]. Up to now genre classification for digitally
available music has been performed manually. Therefore
techniques for automatic genre classification would be a valuable
addition to the development of audio information retrieval
systems for music.

In this work, algorithms for automatic genre classification are
explored. A set of features for representing the music surface and
rhythmic structure of audio signals is proposed. The performance
of this feature set is evaluated by training statistical pattern
recognition classifiers using audio collections collected from
compact disks, radio and the web. Audio signals can be
automatically classified using a hierarchy of genres that can be
represented as a tree with 15 nodes. Based on this automatic genre
classification and the extracted features two graphical user
interfaces for browsing and interacting with large digital music
collections have been developed. The feature extraction and
graphical update of the user interfaces is performed in real time
and has been used to classify li ve radio signals.

2. RELATED WORK
An early overview of audio information retrieval (AIR) (including
speech and symbolic music information retrieval) is given in [3].
Statistical pattern recognition based on the extraction of spectral
features has been used to classify Music vs Speech [4], Isolated
sounds [5, 6] and Instruments [7]. Features related to timbre
recognition have been explored in [8,9]. Extraction of
psychoacoustic features related to music surface and their use for
similarity judgements and high level semantic descriptions (li ke
slow or loud) is explored in [10]. Content-based similarity
retrieval from large collections of music is described in [11].
Automatic beat tracking systems have been proposed in [12, 13]
and [14] describes a method for the automatic extraction of time
indexes of occurrence of different percussive timbres from an
audio signal. Musical genres can be quite subjective making
automatic classification diff icult. The creation of a more objective
genre hierarchy for music information retrieval is discussed in
[15]. Although the use of such a designed hierarchy would
improve classification results it is our belief that there is enough
statistical information to adequately characterize musical genre.
Although manually annotated genre information has been used to
evaluate content-based similarity retrieval algorithms to the best
of our knowledge, there is no prior published work in automatic
genre classification.
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3. FEATURE EXTRACTION
3.1 Musical Surface Features
In this work the term “musical surface” is used to denote the
characteristics of music related to texture, timbre and
instrumentation.  The statistics of the spectral distribution over
time can be used in order to represent the “musical surface” for
pattern recognition purposes. The following 9-dimensional feature
vector  is used in our system for this purpose: (mean-Centroid,
mean-Rolloff, mean-Flux, mean-ZeroCrossings, std-Centroid,
std-Rolloff, std-Flux, std-ZeroCrossings,  LowEnegry).

The means and standard deviations of these features are calculated
over a “texture” window of 1 second consisting of 40 “analysis”
windows of 20 milli seconds (512 samples at 22050 sampling
rate). The feature calculation is based on the Short Time Fourier
Transform (STFT). that can be eff iciently calculated using the
Fast Fourier Transform (FFT) algorithm [16].

The following features are calculated for each “analysis” window:
(M[f] is the magnitude of the FFT at frequency bin f and N the
number of frequency bins):

• Centroid :              
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The Centroid is a measure of spectral brightness.

• Rolloff :    is the value R such that :
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        The rolloff is a measure of spectral shape.

• Flux:                 ][][ fMfMF p−=               (3)

where pM denotes the FFT magnitude of the previous

frame in time. Both magnitude vectors are normalized in
energy. Flux is a measure of spectral change.

• ZeroCrossings: the number of time domain zerocrossings of
the signal. ZeroCrossings are useful to detect the amount of
noise in a signal.

• LowEnergy: The percentage of “analysis” windows that
have energy less than the average energy of the “analysis”
windows over the “texture” window.

3.2 Rhythm features
The calculation of features for representing the rhythmic structure
of music is based on the Wavelet Transform (WT) which is a
technique for analyzing signals that was developed as an
alternative to the STFT. More specifically, unlike the STFT that
provides uniform time resolution for all frequencies the DWT
provides high time resolution for all frequencies, the DWT
provides high time resolution and low frequency resolution for
high frequencies and high time and low frequency resolution for
low frequencies.

The Discrete Wavelet Transform (DWT) is a special case of the
WT that provides a compact representation of the signal in time
and frequency that can be computed eff iciently. The DWT
analysis can be performed using a fast, pyramidal algorithm
related to multi rate filterbanks [17]. An introduction to wavelets
can be found in [18].

For the purposes of this work, the DWT can be viewed as a
computationally eff icient way to calculate an octave
decomposition of the signal in frequency. More specifically the
DWT can be viewed as a constant Q (bandwidth / center
frequency) with octave spacing between the centers of the filters.

In the pyramidal algorithm the signal is analyzed at different
frequency bands with different resolutions by decomposing the
signal into a coarse approximation and detail i nformation. The
coarse approximation is then further decomposed using the same
wavelet step. The decomposition is achieved by successive
highpass and lowpass filtering of the time domain signal and is
defined by the following equations:
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where ][],[ kyky lowhigh  are the output of the highpass (g) and

lowpass (h) filters, respectively after subsampling by two. The
DAUB4 filters proposed by Daubechies [19] are used.

The rhythm feature set is based on detecting the most salient
periodicities of the signal. Figure I shows the flow diagam of the
beat analysis. The signal is first decomposed into a number of
octave frequency bands using the DWT. Following this
decomposition the time domain amplitude envelope of each band
is extracted separately. This is achieved by applying full wave
rectification, low pass filtering and downsampling to each band.
The envelopes of each band are then summed together and an
autocorrelation function is computed. The peaks of the
autocorrelation function correspond to the various periodicities of
the signal’s envelope. These stages are given by the equations:

1. Full Wave Rectification (FWR):

])[(][ nxabsny =                       (6)

2. Low Pass Filtering (LPF): (One Pole filter with an alpha
value of 0.99) i.e:

][][)1(][ nynxny αα −−=        (7)

3. Downsampling (↓↓) by k (k=16 in our implementation):

][][ knxny =                                    (8)

4. Normalization (NR) (mean removal):
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Fig. I Beat analysis flow diagram

5. Autocorrelation  (AR) (computed using the FFT for
eff iciency) :
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The first five peaks of the autocorrelation function are detected
and their corresponding periodicities in beats per minute (bpm)
are calculated and added in a “beat” histogram. This process is
repeating by iterating over the signal and accumulating the
periodicities in the histogram. A window size of 65536 samples at
22050 Hz sampling rate with a hop size of 4096 samples is used.
The prominent peaks of the final histogram correspond to the
various periodicities of the audio signal and are used as the basis
for the rhythm feature calculation.

The following features based on the “beat” histogram are used:

1. Period0: Periodicity in bpm of the first peak Period0

2. Amplitude0: Relative amplitude (divided by sum of
amplitudes) of the first peak.

3. RatioPeriod1: Ratio of periodicity of second peak to the
periodicity of the first peak

4. Amplitude1: Relative amplitude of second peak.

5. RatioPeriod2, Amplitude2, RatioPeriod3, Amplitude3

These features represent the strength of  beat (“beatedness”) of the
signal and the relations between the prominent periodicities of the
signal. This feature vector carries more information than
traditional beat tracking systems [11, 12] where a single measure
of the beat corresponding to the tempo and its strength are used.

Figure II shows the “beat” histograms of two classical music
pieces and two modern pop music pieces. The fewer and stronger
peaks of the two pop music histograms indicate the strong
presence of a regular beat unlike the distributed weaker peaks of
classical music.

Fig. II    Beat Histograms for Classical (left) and Pop (right)

The 8-dimensional feature vector used to represent rhythmic
structure and strength is combined with the 9-dimensional musical
surface feature vector to form a 17-dimensional feature vector that
is used for automatic genre classification.

4. CLASSIFICATION
To evaluate the performance of the proposed feature set, statistical
pattern recognition classifiers were trained and evaluated using
data sets collected from radio, compact disks and the Web. Figure
III shows the classification hierarchy used for the experiments.
For each node in the tree of Figure III , a Gaussian classifier was
trained using a dataset of 50 samples (each 30 seconds long).
Using the Gaussian classifier each class is represented as a single
multidimensional Gaussian distribution with parameters estimated
from the training dataset [20]. The full digital audio data
collection consists of 15 genres * 50 files * 30 seconds  = 22500
seconds (i.e 6.25 hours of audio).

For the Musical Genres (Classical, Country…..)  the combined
feature set described in this paper was used. For the Classical
Genres (Orchestra, Piano…) and for the Speech Genres
(MaleVoice, FemaleVoice…) mel-frequency cepstral coeff icients
[21] (MFCC) were used. MFCC are perceptually motivated
features commonly used in speech recognition research. In a
similar fashion to the Music Surface features, the means and
standard deviations of the first five MFCC over a larger texture
window (1 second long) were calculated. MFCCs can also be used
in place of the STFT-based music surface features with similar
classification results. The use of MFCC as features for classifying
music vs speech has been explored in [22].

The speech genres were added to the genre classification
hierarchy so that the system could be used to classify li ve radio
signals in real time. “Sports announcing” refers to any type of
speech over noisy background.
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Fig. III   Genre Classification Hierarchy

Table 1.   Classification accuracy percentage results

MusicSpeech Genres Voices Classical

Random 50 16     33 25

Gaussian 86 62 74 76

Table 1. summarizes the classification results as pecentages of
classification accuracy. In all cases the results are significantly
better than random classification. These classification results are
calculated using a 10-fold evaluation strategy where the
evaluation data set is randomly partitioned so that 10% is used for
testing and 90% for training. The process is iterated with different
random partitions  and the results are averaged (in the evaluation
of Table.1 one hundred iterations where used).

Table 2. shows more detailed information about the genre
classifier performance in the form of a confusion matrix. The
columns correspond to the actual genre and the rows to the
predicted genre. For example the cell of row 2, column 1 with
value 0.01 means that 1 percent of the Classical music (column 1)
was wrongly classified as Country music (row 2). The percentages
of correct classifications lie in the diagonal of the confusion
matrix. The best predicted genres are classical and hiphop while
the worst predicted are jazz and rock. This is due to the fact that
the jazz and rock are very broad categories and their boundaries
are more fuzzy than classical or hiphop.

Table 3. shows more detailed information about the classical
music classifier performance in the form of a confusion matrix..

classic country Disco Hiphop jazz Rock

classic 86 2 0 4 18 1

country 1 57 5 1 12 13

disco 0 6 55 4 0 5

Hiphop 0 15 28 90 4 18

Jazz 7 1 0 0 .37 12

Rock 6 19 11 0 27 48

Table 2.   Genre classification confusion matrix

choral orchestral Piano string 4tet

choral 99 10 16 12

orchestral 0 53 2 5

piano 1 20 75 3

string 4tet 0 17 7 80

Table 2.   Classical music classification confusion matrix

Fig. IV Relative feature set importance

Figure IV shows the relative importance of the “musical surface”
and “ rhythm” feature sets for the automatic genre classification.
As expected both feature sets perform better than random and
their combination improves the classification accuracy. The genre
labeling was based on the artist or the compact disk that contained
the excerpt. In some cases this resulted in outliers that are one of
the sources of prediction error. For example the Rock collection
contains songs by Sting that are more close to Jazz than Rock
even for a human listener. Similarly the Jazz collection contains
songs with string accompaniment and no rhythm section that
sound like Classical music. It is li kely that replacing these outliers
with more characteristic pieces would improve the genre
classification results.

0

10

20

30

40

50

60

Random

Random

Rhythm

MusicSurface

Full



Fig. IV GenreGram

5. USER INTERFACES
Two new graphical user interfaces for browsing and interacting
with collections of audio signals have been developed (Figure
IV,V) . They are based on the extracted feature vectors and the
automatic genre classification results.

• GenreGram is a dynamic real-time audio display for
showing automatic genre classification results. Each genre is
represented as a cylinder that moves up and down in real
time based on a classification confidence measure ranging
from 0.0 to 1.0. Each cylinder is texture-mapped with a
representative image of each category. In addition to being a
nice demonstration of automatic real time audio
classification, the GenreGram gives valuable feedback both
to the user and the algorithm designer. Different
classification decisions and their relative strengths are
combined visually, revealing correlations and classification
patterns. Since the boundaries between musical genres are
fuzzy, a display like this is more informative than a single
classification decision. For example, most of the time a rap
song will t rigger Male Voice, Sports Announcing and
HipHop. This exact case is shown in Figure IV.

• GenreSpace is a tool for visualizing large sound collections
for browsing. Each audio file is represented a single point in
a 3D space. Principal Component Analysis (PCA) [23] is
used to reduce the dimensionality of the feature vector
representing the file to the 3-dimensional feature vector
corresponding to the point coordinates. Coloring of the
points is based on the automatic genre classification. The
user can zoom, rotate and scale the space to interact with the
data. The GenreSpace also represents the relative similarity
within genres by the distance between points. A principal
curve [24] can be used to move sequentially through the
points in a way that preserves the local clustering
information.

Fig. V GenreSpace

6. FUTURE WORK
An obvious direction for future research is to expand the genre
hierarchy both in width and depth. The combination of
segmentation [25] with automatic genre classification could
provide a way to browse audio to locate regions of interest.
Another interesting direction is the combination of the graphical
user interfaces described with automatic similarity retrieval that
takes into account the automatic genre classification. In its current
form the beat analysis algorithm can not be performed in real time
as it needs to collect information from the whole signal. A real
time version of beat analysis is planned for the future. It is our
belief that more rhythmic information can be extracted from audio
signals and we plan to investigate the abilit y of the beat analysis
to detect rhythmic structure in synthetic stimuli .

7. SUMMARY
A feature set for representing music surface and rhythm
information was proposed and used to build automatic genre
classification algorithms. The performance of the proposed data
set was evaluated by training statistical pattern recognition
classifiers on real-world data sets. Two new graphical user
interfaces based on the extracted feature set and the automatic
genre classification were developed.

The software used for this paper is available as part of  MARSYAS
[26] a  software framework for rapid development of computer
audition application written in C++ and JAVA. It is available as
free software under the Gnu Public License (GPL) at:

 http://www.cs.princeton.edu/~gtzan/marsyas.html
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