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ABSTRACT

In recent years the interest in melodic similarity has
mushroomed mainly due to the increased importance of music
information retrieval (MIR). A great number of similarity
models and algorithms have been developed, but little or no
attention has been paid to cognitive or perceptual aspects to the
issue at hand. Questions, about the relevant parameters and the
appropriate implementation are under-researched as are
experimental data. This paper focuses on the pitch aspect of
melodic similarity, scrutinising the term pitch replacing it by a
less ambivalent and overused term, which we will call meloton.
Based on the term meloton the paper suggests to approach the

issue of ‘melotonic’ similarity from a transformational angle,
where transformations are executed as reflections and
translations. ‘Melotonic’ similarity then is seen as related to the
transformation process in form of a transpositional and interval
vector. Finally, melotonic similarity as portrait in a
psychological context emerges as a multi-facet phenomenon
requiring the development of flexible models.

1. INTRODUCTION

Unarguably, melodic similarity has been of great interest to
composers (e.g., Schoenberg, 1967), ethnomusicologists (e.g.,
Adams, 1976) and music analysts (e.g., Reti, 1951). However,
the issue has received new interest due to the development of the
internet and the need to administrate and retrieve musical
information. Early works on MIR date back to the 60’s with
Kassler (1966) as one of the pioneers. Not much research was
done on the topic for some time, but by now the growing interest
is reflected for instance in the fact that in 2000 the first
international symposium on MIR was organised and attended by
researchers from a great variety of fields. The interest of MIR in
the issue of similarity does not necessarily add importance to the
issue but certainly urgency to develop reliable and relevant
similarity models. In fact, by now several models and algorithms
have been proposed (Anagnostopoulou, Hörnel & Höthker, 1999;
Cambouropoulos, 2000; Crawford, Iliopoulos & Raman, 1998;
Dovey &Crawford, 1999; Downie, 1999; Kluge, 1996; Maidin
& Fernström, 2000;  Smith & McNab & Witten, 1998), but none
of these models take cognitive or perceptual issues sufficiently
into account, nor do they pay a closer look at as to what
parameters to select and how to implement them. 

Admittedly, the psychological and more specific the
music-psychological research in this field leaves possibly more
questions unanswered than answered (compare Goldstone,
1998), but this seems not to justify the dismissal of existing
research. Notably, none of the researchers takes dynamic aspects
into account and rhythmic aspects play no or little role by
regarding melodic similarity exclusively as a pitch phenomenon,
without considering the limitations of their models.

Interestingly, the question of what the term pitch, a term which
from a psychological angle is more than problematic, is not
being asked, although there exists some awareness to the related
issue of musical representation; that is whether we are dealing
with the representation of music in form of a score, with
recorded music or digital sources such as MIDI files (e.g.
Wiggins & Harris & Smaill, 1989), but the central issue of pitch
perception is hardly ever touched. 

Most strikingly, the works of Egmond & Povel & Maris (1996)
have not been referred to in a single instance to the knowledge
of the author, although their findings are in agreement with
previous research (Francès, 1988) and also in agreement with
more recent research by Hofmann-Engl & Parncutt (1998). Their
experiments indicate that transposition is a significant factor for
melodic similarity judgements whereby melodic similarity
decreases with increasing size of the transpositional interval.
However, all the models known to the author are transpositional
invariant. This demonstrates the strong tendency of researchers
to borrow their tools from music theoretical teachings where
transpositions of a motive are regarded as being equivalent. This
is not to say that search tools within MIR should under no
circumstances consider transpositions as equivalent (for instance
when analysing the structure of a specific composition), but
where perceptual issues are of importance such attempt will have
to be seen as a shortcoming. 

While some models are seemingly unaware of the  evidence as
produced by researchers (e.g.  Dowling & Harwood, 1986;
Dowling 1994; Edworthy, 1982, 1985; White, 1960) that contour
is somewhat a factor determining cognitive similarity (for
instance models based on dynamic programming) there are
models which take contour into account (for instance Maidin’s
model), but still reference to psychological research is not given.

Experiments by Hofmann-Engl and Parncutt (1998) indicate that
contour is in fact an imbedded factor of what they called interval
difference. This is, a reference-melody raised by an interval I
between two consecutive tones (let us say tone 1 and tone 2)



produces the interval difference D = I - I’, with I’ being the
interval between the two corresponding tones (tone 1 and tone 2)
of the comparison-melody. Melodies which show contour
differences also produce interval differences and hence contour
appears to be a factor. However, multiple regression shows that
interval difference is the sole factor. Up to this date no model
has accounted for these findings.

Finally, none of the models takes emotional aspects into account.
True, that at this point it seems an almost unattainable task, but
research by Tekman (1998) shows, that emotional aspects can be
at least partly sensibly measured. Clearly, there exists a level of
unawareness amongst melodic similarity researchers of
psychological issues which seems hardly acceptable.

It is the intention of the present paper to contribute to the
bridging of exactly this gap.  Although as mentioned before
dynamic, rhythmic and emotional aspects will have to be seen as
factors alongside pitch, we will focus on pitch exclusively. This
is, pitch is the most discussed aspect of melodic similarity, and
treating all parameters would exceed the framework of this
paper. However, the author is in process of developing a
similarity model which takes dynamics and rhythmic features
into account alongside with pitch. In the first instance we will
scrutinise the term pitch arguing for its substitution by the new
term, which will be called meloton, we then will consider the
transformation of melodies and finally we will develop a
similarity model based on the composition of two specific
transformations.

2. PITCH VERSUS MELOTON

The term pitch is intriguing and perplexing at the same time,
intriguing, because it is probably the most discussed musical and
music psychological term, and perplexing, because it has been
employed  in so many different contexts that it frequently
requires specification to what actually is meant by it. A situation
which led Rohwer (1970) to question the usage of the term pitch
altogether. However, pitch is commonly understood to be the
correlate to the fundamental frequency as Rasch & Plomp (1982)
explain: “Pitch is the most characteristic property of tones ... .
Pitch is related to the frequency of a simple tone and to the
fundamental frequency of a complex tone.” Pitch is seen here
exclusively as being related to a physical quantity. This is as
widespread an approach as is insufficient because subtleties of
pitch perception are not captured by referring to physical
dimensions only. It seems this is the issue Sundberg (1991) is
addressing when he suggests to see pitch as locating musical
sound in terms of musical intervals and to call other aspects of
pitch perception tone height (the high or lowness of sound).
However, the categorical differentiation between pitch and tone
height seems frail as even sounds with low pitch salience (e.g.,
musical chimes) can produce a distinctive pitch sensation (Askill
1997). Confronted with the phenomenon that sounds without
fundamental frequency can produce pitch sensations, Schouten
(1938) introduced the term residual pitch. However, from a
phenomenological angle there is no difference between pitch and
residual pitch — both appear to a listener in the same way.
Concepts of virtual pitch (Houtsma & Goldstein 1972, Terhardt
1982, Hofmann-Engl 1999) added further complexity to the issue
by demonstrating that sounds do not have one single pitch but a

multiplicity of pitches with varying degrees of probabilities.
Employing this concept the term pitch has to be replaced by the
term most probable pitch. It seems the introduction of a new
term which will have some specific psychological meaning is
more than appropriate. We argue to use the term meloton as
suggested by Hofmann-Engl (1989).

Without going into detail, we will consider some features of
what this term is to deliver. We wish for this term to be purely
of psychological meaning. This is we endeavour to understand
melodic similarity from a cognitive angle. Thus, concepts of
fundamental frequency and other physicalistic approaches are
inadequate. Hereby, the term meloton will represent the
psychological concept whereby a listener listens to a sound
directing her/his attention to the sound with the intention to
decide whether the sound is high or low. True, this does not
deliver a quantity we could input into a similarity model, and
hence we will have to define the value of a meloton somehow
without using a physicalistic concept. In this context it seems
most appropriate to consider an experimental setting as
employed by  Schouten (1938). A selected group of listeners is
asked to tune in a (sinusoidal) comparison tone with variable
frequency to match according to the listener’s  perception a test
tone (for which we want to obtain a melotonic value).  The
logarithm of the comparison tone then will be called m-response
of this listener. Assuming that the group of listeners consist of
n listeners, we will obtain n m-responses. We will call the mean
of this distribution the m-center. The mode of the distribution
will be called m-peak. The relative density of the m-peak will be
called melograde, and can be defined as:

M
D p

D l

g
m

m i

i

n=

=
�

( )

( )
1

where Mg is the melograde, D(pm) the density of the peak of
the m-distribution,  D(lm)i the density of the location lm at the
place i and n the number of locations. The range of Mg is ]0,
1]. Note, that models of the pitch salience (Terhardt, Stoll &
Seewann 1982) are predictors for the peak of the response
distribution.

We finally define the value M of a meloton as given by the value
of the m-centre. However, if the melograde of a m-distribution
is larger than 0.75 and the peak and the centre coincide with
maximum deviation of 25 cents, the value of the meloton is
given by the peak of the m-distribution. In this case we speak of
strong meloton Ms. In all other cases we speak of weak meloton
Mw.

There are several advantages to this approach as there are
limitations.  Firstly, the classification of melota into weak and
strong melota guaranties that tones such as produced by a drum
instrument will also fetch a melotonic value. This allows for the
inclusion of ‘drum-melodies’ into a melodic similarity model.
Secondly, we replaced the dogmatic attitude towards pitch
perception by an understanding which is sensitive towards
individual, cultural, educational and social differences; what
might appear to one group as a sound with a certain melotonic
value might appear to another group as a sound with a different
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melotonic value. This is certainly of importance when
considering melodic similarity. Right at the basis melodic
similarity judgement might differ due to lower level perceptual
differences. Objections might be raised that this approach is
impracticable in many ways, as the measurement of melotonic
values is time consuming and expensive. Still, we might expect
that data bases containing melotonic measurements might be
established and made available in future. Another objection
might be that even if measurements of single tones are available,
there is no guaranty that meloton will retain their values when
put into a melodic context. Although this might be true, this will
have to be an issue to be investigated. However, considering the
success of aural training (where listeners are required to identify
tones in any context), we expect that this approach is more than
promising.

Before we will base a transformation theory on melota, we will
abandon the term melody due its many ambivalent connotations
and replace it by the term chain. We will as mentioned only
consider the melotonic component of a chain (excluding
properties such as timbre, duration and loudness). A melotonic
chain will be written as m-chain and as M(ch). Now, we will
consider transformations of melotonic chains.

2. MELOTONIC TRANSFORMATIONS

The motivation for developing a transformation theory is driven
by the proposal as put forward by Palmer (1983), where
similarity is understood to be related to the transformation
process involved in mapping two objects onto each other. There
have been several attempts within the camp of pitch class
theorists to introduce similarity measures and transformations of
pitch class sets (e.g., Isaacson (1996), Lewin (1977), Morris

(1979)). However, none of these approaches are of interest in
this context, as a pitch class set is fundamentally a different
entity than is a melotonic chain. One attempt to describe melodic
transformations has been put forward by Mazzola (1987) and has
been further developed by Hammel (1999) in form of matrices.
Without going into detail, the main deficiency of their
transformation matrices is the combination of time and pitch in
one matrix leading to time and pitch appearing as mixed terms.
Maybe even more important, the matrices as they stand, do not
allow for general transformations. Thus, a theory of similarity
based on their concept would not allow for the comparison of
any melody with any melody.

Instead we will take inversions and transpositions as a starting
point and generalise these two transformations. As we are
dealing with melotonic transformations, we will require that two
chains will have the same rhythm and the same dynamic
structure. This is a restriction to the model, but this deficiency
can only be overcome at a later stage including rhythm and
dynamics and possibly emotional aspects in a final model.
However, as mentioned, this would exceed the framework of this
paper.

2.1. Inversion

It is a well known geometrical fact, that inversion can be
illustrated as a reflection along a straight line. Taking a
melotonic chain (melody) M(ch) to consist of an initial tone with
meloton m1 and then the subsequent intervals 100, 100, -100,
-100 (where 100 might be taken to mean 100 cents), we write:
M(ch) = (m1)[100, 100, -100, -100] to be reflected onto the chain
M(ch’) = (m1’)[-100, -100, 100, 100] will require a straight line
through the point p = 50 (see Figure 1)

Figure 1: The m-chain M(ch) = (m1)[100, 100, -100, -100] is mapped onto the chain M(ch’) = (m1’)[-100,-100, 100, 100] via
the reflection line through p, with m1 = 0 and p = 50

2.2. Transposition

Executing two reflections along two different reflection lines
results in transposition. Taking the example from above, where
M(ch) = (m1)[100, 100, -100, -100], we obtain the inversion
M(ch’) = (m1’)[-100, -100, 100, 100], when reflecting M(ch)
through p1 = 50 and the transposition M(ch’’) = (m1’’)[100, 100,
-100, -100] when reflecting M(ch’) through p2 = 150. The

difference between p2 and p1 is p2 - p1 = 100, and the
transposition interval between M(ch) and M(ch’’) is 2(p2 - p1) =
200 (Figure 2). The transposition interval is generally 2(p2 - p1)
regardless where p2 and p1 are located. Allowing for the
reflecting of single melota rather than the reflection of an entire
m-chain, we can illustrate transposition as a reflection along a
reflection chain, which we will call M( χ), we obtain figure 3.
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Figure 2: The m-chain M(ch) = (m1)[100, 100, -100, -100] is
mapped onto the chain M(ch’’) = (m1’)[-100,-100, 100, 100]
via the reflection line through p1 = 50 and onto M(ch’’) =
(m1’’)[100, 100, -100, -100] via the reflection line through p2

= 150. The graph illustrates, that reflection along two lines
results in transposition.

Figure 3: The m-chain M(ch) = (m1)[100, 100, -100, -100] is
mapped onto the chain M(ch’) = (m1’)[-100,-100, 100, 100] via
the sequence of reflection points p1, p2, ... p5, thus effecting
the transposition of M(ch).

2.3. General melotonic transformations

Given a m-chain M(ch) of the length n and a reflection chain
M(χ) of the length n, we find that M(ch) will be mapped onto
M(ch’), where for all mi � M(ch) and all pi � M(χ), that m’i = 2pi -
mi, for all m’i  � M(ch’). This is important, when defining
reflections and translations (we will use the mathematical term
instead for transposition) within the vector-space Rn+1. As we will
see later, the composition of two specific reflections will enable
us to produce similarity measures. However, we define
reflections and translations on a more formal level first. For this
purpose we define the m-vector :

�

m

Definition:

Given a m-chain of length n, with M(ch) = [m1, m2, ..., mn], we
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This enables us to define the reflection matrix R as:
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Multiplying the reflection matrix R  by a m-vector , we
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Clearly, multiplying the reflection matrix by a m-vector, results
in the reflection of this m-vector. As two reflections result in
translation, we will define the translation matrix, where each

component mi � will be translated by the translation interval
�

m



Ii = 2(p2i - p1i). We define:
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There exists a  complex algebraic structure between reflections
and translations. However, the framework of the paper exceeds
a discussion of this issue. Still, it might be worth mentioning that
the composition of two reflection matrices results in a translation
matrix. This is the reason, why we had to introduce translations,
although translations are of no significance in context of
melotonic similarity. We are now equipped to consider melotonic
similarity.

3. MELOTONIC SIMILARITY

It seems the best way of approaching melotonic similarity is,
when we consider two m-vectors and , such as:
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with a as a constant

We will now reflect the m-vector through the 0-point Rn+1 via
�

m1

the reflection matrix R0. We obtain the m-vector , with:
�

m'1

�

m

m

m

m

m

m

mn n

'

. .

. . .

. . .

. .

.

.

.

.1

1

2

1

2

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1 1 1

=

−
−

−

�

�

�
�
�
�
�
�
��

�

�

�
�
�
�
�
�
��

�

�

�
�
�
�
�
�
��

�

�

�
�
�
�
�
�
��

=

−
−

−

�

�

�
�
�
�
�
�
��

�

�

�
�
�
�
�
�
��

Reflecting the m-vector onto the m-vector requires the
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As we find:

R m ms ⋅ =
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Isolating the last column in the subspace Rn of  Rn+1, we can

define the similarity vector :
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With m2i = m1i + a, we obtain the similarity vector: 
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Geometrically, this means that  the similarity vector comes to
coincide with the diagonal of the space Rn. We further find for
the length of this vector:
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 Clearly, the larger the transposition interval a is, the larger will
be the length of the similarity vector. According the van
Egmond, Povel & Maris (1996) melodic similarity decreases
with increasing transposition interval. Thus, we will expect that
the length of the similarity vector will be correlated to the
transpositional component of melotonic similarity. 

The intervalic component of melotonic similarity,
according to Hofmann-Engl & Parncutt (1998) is a significant
predictor. This is, when two m-vectors are not
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simply transpositions of each other but deviate in shape. The

similarity vector will then deviate from the diagonal in Rn.
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Without going into a lengthily discussion, the angle between the
similarity vector and the diagonal of Rn is not a suitable measure
of the intervalic similarity component, as small intervalic
changes can lead to a sudden increase of the angle. However, the
differences between the components of the similarity vector are.
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We define the interval vector with as a vector
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We will give an example referring to the four m-chains M(ch1)
= (m1)[1, -1], M(ch2) =  (m1)[3, -3], M(ch3) = (m1)[-1, 1]  and
M(ch4) = (m1)[1, 1] (where 1 unit might be one semitone).
Setting m1 to be m1 = 0, we obtain the four m-vectors:
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In musical notation we obtain (setting the first tone to be c):

M(ch1) =

M(ch2) =

M(ch3) =

M(ch4) =
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are identical (= ), although  M(ch1) and M(ch2) have the8
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same contour, while M(ch1) and M(ch3) have different  contour.
However, both chains  show the same interval difference. As
mentioned above contour differences  are imbedded within
interval differences. Thus, similarity and interval vector are in
agreement with experimental findings.  Further, the comparison
of M(ch1) and M(ch4) demonstrates, that the length of the
similarity vector (=2) does not necessarily produce a length of

 . Thus, similarity and interval vector are independent8
similarity predictors. Because of the smaller length of the
interval vector, we expect M(ch1) to be more similar when
compared with M(ch4) than when compared with M(ch2).

We will expect that  melotonic similarity will be correlated to the
length or a derivative of the similarity vector (the longer the
vector the smaller the similarity) and the deviation of the
similarity vector from the diagonal measured by the length or a
derivative of the interval vector (the longer the interval vector the
smaller the similarity).

While the similarity vector takes the differences of two
corresponding melota mi and m’i into account without considering
any higher order (it does not matter where a pair of melota is
placed within a chain), the interval vector considers higher order
relationships in as much as pair-wise groupings are covered (the
difference  between mi - mi+1 and m’i - m’i+1). We could take even
higher order relationships into account by forming the
differences of the components of the interval vector in the
fashion we formed the differences of the similarity vector
obtaining the interval vector. We then could from the differences
of these differences and so on. We then would obtain a series of
vectors with decreasing dimensions starting with the similarity
vector of dimension n, followed by the interval vector with the
dimension n-1, followed by the differences of the interval vector

producing a vector of dimension n-2 and so on till we obtain a
vector of dimension 1. Thus, higher order relationships would
b e
covered and a predictor of melotonic similarity could be
modelled around something comparable to a Taylor series.
However, we expect that the similarity vector and interval
vector will be sufficient to produce useful approximations.

Basing a similarity model exclusively on the lengths of the
similarity and interval vector will still produce several
complications. Without going into much detail, we will
consider some experimental findings. Hofmann-Engl &
Parncutt (1998) showed that keeping the transposition interval
constant and varying the length of two melodic fragments (one
to five tones), that similarity judgements increase with
increasing length of the fragments. This seems to call for
enveloping the components of the similarity vector by a
exponential function giving more weight to earlier tones than
later tones. Further, comparing two given m-chains of the
length n, which are identical except one interval, Hofmann-Engl
& Parncutt (1998) found that by varying the length n, that
similarity judgements increase with increasing length n. Thus,
a model will also have to be length sensitive. According to
these researchers, tempo is not a factor in melotonic similarity,
but appears as a rhythmic factor. We also might expect that
aspects concerning the shape of two m-chains as covered by the
interval vector will affected by the primacy/recency effect,
where earlier and later tones are weighted more than are tones
in the middle. This might call for enveloping the components of
the interval vector by a Gauss distribution. Finally, a suitable
model will require some empirical constants which will have to
be determined through experimentation. However, at this point
we might suggest a simple melotonic model of the form:

:

where is the transpositional similarity predictor and is the interval similarity predictor, k1 and k2 are empirical
�

F1

�

F2

constants determining the strength of each interval component, c1 and c2 are empirical constants determining ho much the length
of a chain affects similarity, s1, s2, ... sn are the components of the similarity vector, I1, I2, ..., In-1 are the components of the
interval vector and n is the length of the compared m-chains.



An overall similarity could then be defined as:

S F F= ⋅
� �

1 2

In fact, setting c1 = 1 and c2 = -2, we obtain a correlation of
87% with the data as produced by the two experiments as
conducted by Hofmann-Engl & Parncutt (1998).

An overall similarity model taking rhythmic, dynamic and
pitch features into account, might be of the form:

S S S Sm d r= + +α β γ

where α,α,α,α,    β,β,β,β,    γγγγ are empirical constants, Sm as the pitch
similarity, Sd as the dynamic similarity and Sr as the
rhythmic similarity

 This is not to say that this  the most adequate model, but it is
fashioned based on some available data, some theoretical
concepts and is similar to Shepard’s (1987) model. However,
the model as it stands does not take into account any rhythmic
or dynamic aspects nor does it pay tribute to harmonic features
or emotional aspects. It also allows for the comparison of
m-chains only which have equal length. Further, we might find
that tones which are longer will bear more weight than shorter
tones. Thus, as the model stands it might be only suitable as a
predictor for short isochronous m-chains.

4. CONCLUSION

This paper set out to investigate an aspect of melodic
similarity from a cognitive angle.  We found that the term
pitch is little satisfying and we argued for replacing it by the
term meloton which was defined as a cognitive quality of
sound. We further proposed that melotonic similarity is best
approached by defining a set of transformations (reflections
and translations). Based on the composition of two specific
reflections we were able to define a similarity and interval
vector which we propose to be somewhat sufficient to form the
basis for a melotonic predictor. Specifically, we presented a
simple similarity model which admittedly shows limitations
but might demonstrate that more complex and comprehensive
models can be developed. However, before a more
comprehensive model will become available, many more
experiments on melodic similarity will have to be conducted.
Considering that we covered melotonic similarity only, we can
by now conclude that the construction of sufficient models is
a far more complex task than generally acknowledged, but at
the same time it appears to be an achievable task. 
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